

Shortest Path Algorithms

Kuan-Yu Chen (陳冠宇)

2019/06/05 @ TR-310-1, NTUST

Dijkstra's Algorithm

- Dijkstra's algorithm solves the single-source shortest-paths problem on a weighted, directed graph $G = (V, E)$ for the case in which all edge weights are nonnegative
 - $w(u, v) \geq 0$ for each edge (u, v)
- Dijkstra's algorithm maintains a set S of vertices whose final shortest-path weights from the source s have already been determined
 - Selects the vertex $u \in V - S$ with the minimum shortest path estimate
 - Adds u to S
 - Relaxes all edges leaving u

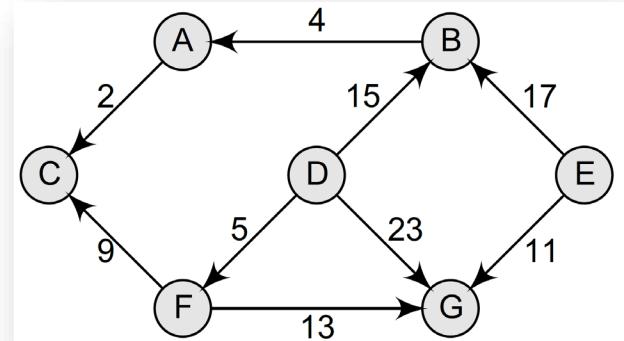
DIJKSTRA(G, w, s)

```
1  INITIALIZE-SINGLE-SOURCE( $G, s$ )
2   $S = \emptyset$ 
3   $Q = G.V$ 
4  while  $Q \neq \emptyset$ 
5       $u = \text{EXTRACT-MIN}(Q)$ 
6       $S = S \cup \{u\}$ 
7      for each vertex  $v \in G.\text{Adj}[u]$ 
8           $\text{RELAX}(u, v, w)$ 
```

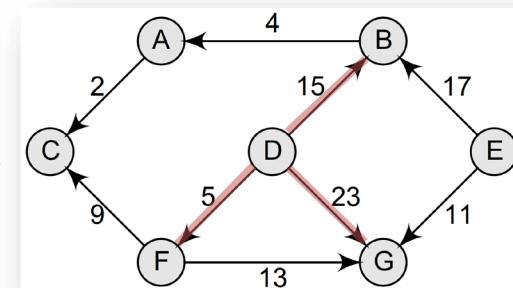
Example.

- Given a graph G , please take D as the initial node, and execute the Dijkstra's algorithm on it

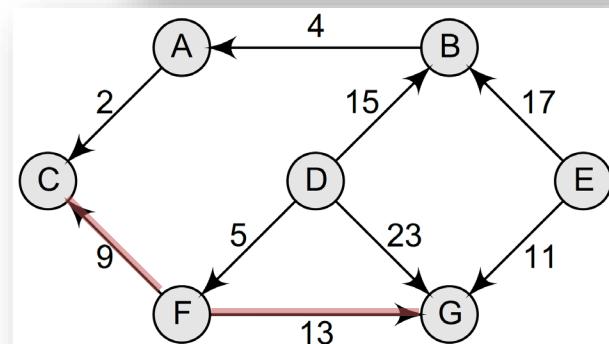
- Step 1:
 - Set $D.d = 0$



- Step 2:
 - Select D and $S = \{D\}$
 - By RELAX, $B.d = 15$, $G.d = 23$, and $F.d = 5$
 - $B.d = 15$, $G.d = 23$, and $F.d = 5$

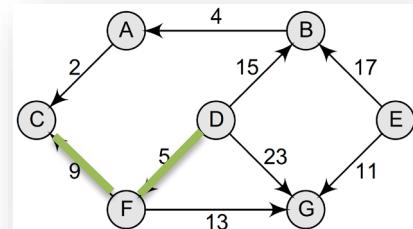
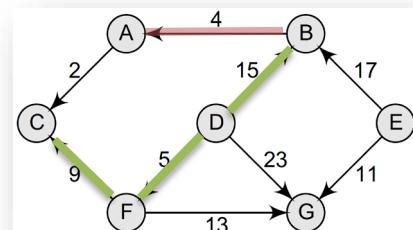
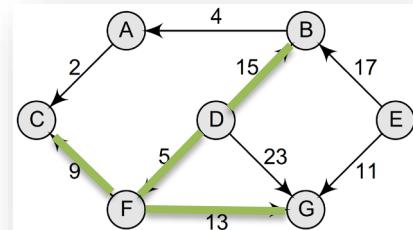


- Step 3:
 - Select F and $S = \{D, F\}$
 - By RELAX, $G.d = 18$ and $C.d = 14$
 - $B.d = 15$, $G.d = 18$ and $C.d = 14$



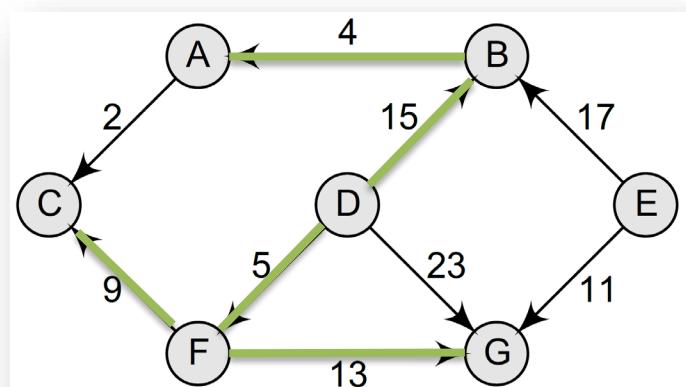
Example.

- Step 4:
 - Select C and $S = \{D, F, C\}$
 - By RELAX, no value should be change!
 - $B.d = 15, G.d = 18$
- Step 5:
 - Select B and $S = \{D, F, C, B\}$
 - By RELAX, $A.d = 19$
 - $G.d = 18$ and $A.d = 19$
- Step 6:
 - Select G and $S = \{D, F, C, B, G\}$
 - By RELAX, no value should be change!
 - $A.d = 19$



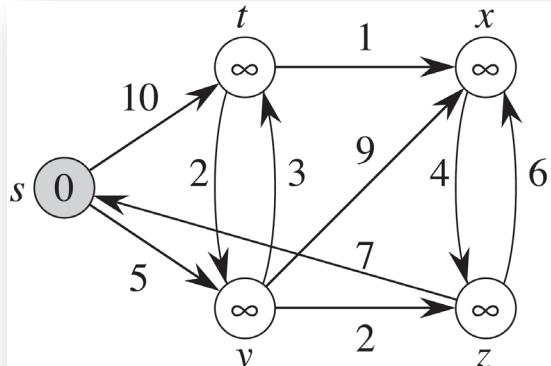
Example.

- Step 7:
 - Select A and $S = \{D, F, C, B, G, A\}$
 - By RELAX, no value should be change!
- Step 8:
 - Select E and $S = \{D, F, C, B, G, A, E\}$
 - By RELAX, no value should be change!
 - Terminated!

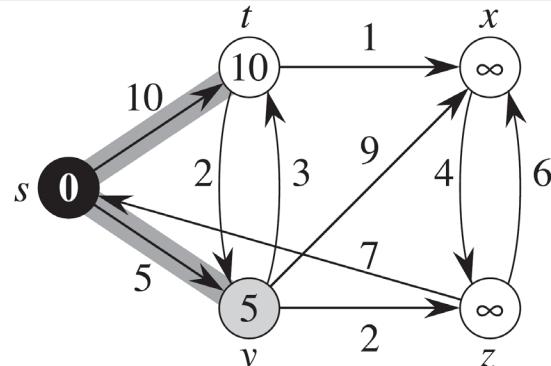


Example..

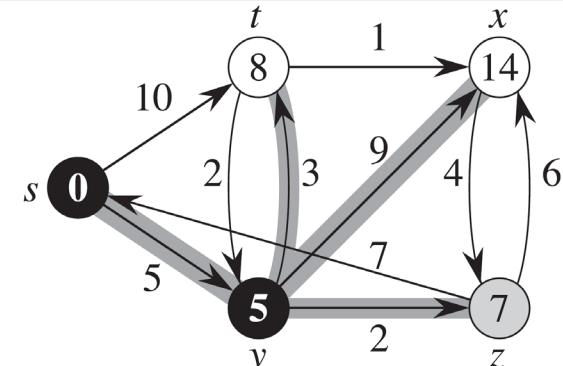
- The source s is the leftmost vertex



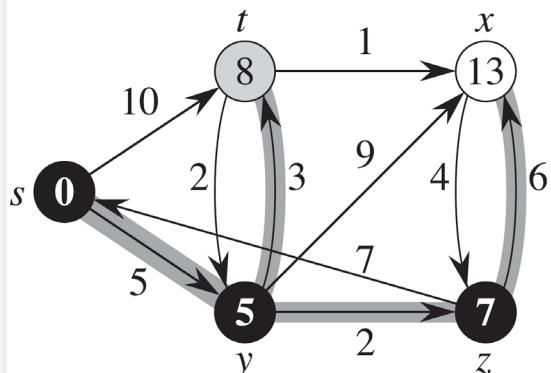
(a)



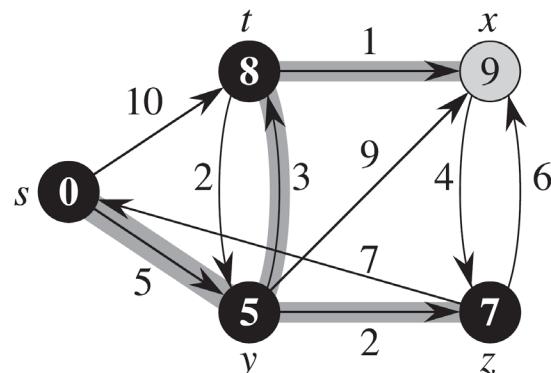
(b)



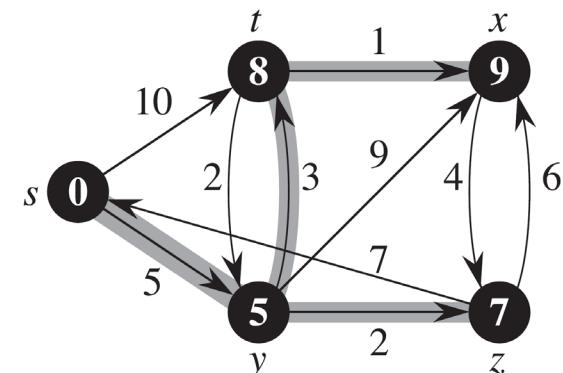
(c)



(d)



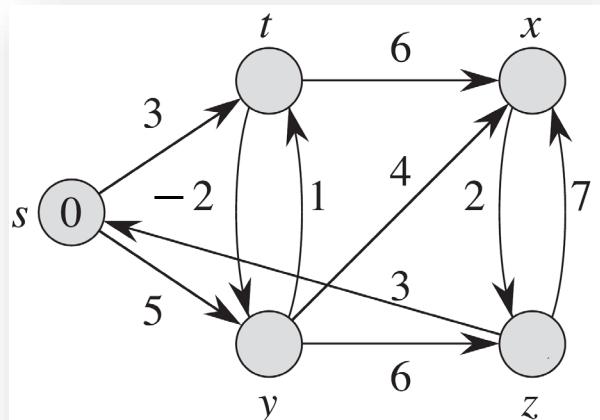
(e)



(f)

Bellman-Ford Algorithm

- The *Bellman-Ford algorithm* solves the single-source shortest-paths problem in the general case in which edge weights may be negative
 - The Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source
 - If there is such a cycle, the algorithm indicates that no solution exists (return false)
 - If there is no such cycle, the algorithm produces the shortest paths and their weights



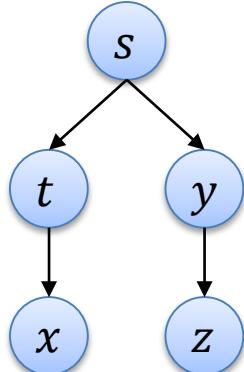
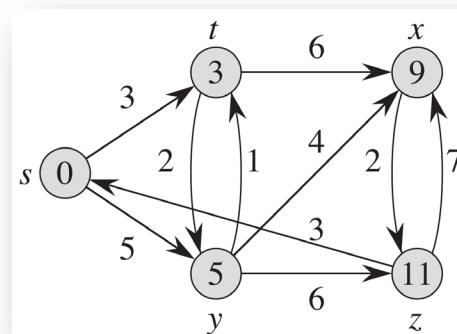
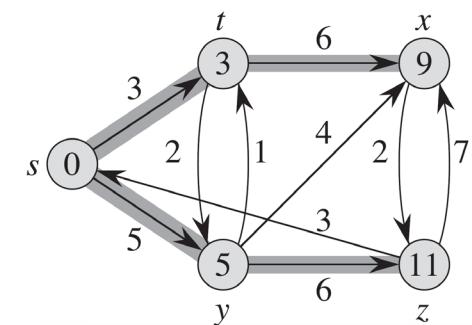
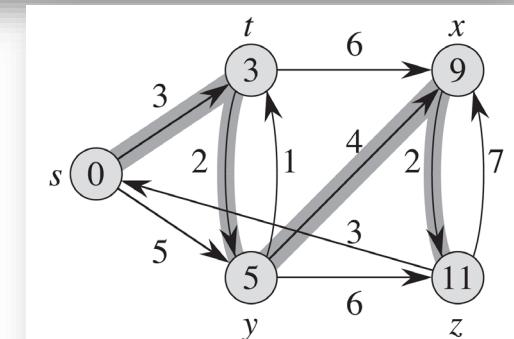
```
BELLMAN-FORD( $G, w, s$ )  
1 INITIALIZE-SINGLE-SOURCE( $G, s$ )  
2 for  $i = 1$  to  $|G.V| - 1$   
3   for each edge  $(u, v) \in G.E$   
4     RELAX( $u, v, w$ )  
5   for each edge  $(u, v) \in G.E$   
6     if  $v.d > u.d + w(u, v)$   
7       return FALSE  
8   return TRUE
```

Correctness

- To prove the correctness of the Bellman-Ford algorithm, we start by showing that if there are no negative-weight cycles
 - Let $G = (V, E)$ be a weighted, directed graph with source s and weight function $w: E \rightarrow \mathbb{R}$, and assume that G contains no negative-weight cycles that are reachable from s . Then, after the $|V| - 1$ iterations of the relaxing for all edges, we have $v.d = \delta(s, v)$ for all vertices v that are reachable from s
 - Proof:
 - Let $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from v_0 to v_k
 - It is easy to understand that p has at most $|V| - 1$ edges
 - Since the Bellman-Ford algorithm performs $|V| - 1$ iterations of the relaxing of all the edges, we thus say it performs a sequence of relaxation steps in order for p , i.e., $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$
 - By the path-relaxation property, after the Bellman-Ford algorithm, $v_k.d = \delta(v_0, v_k) = \delta(s, v_k)$

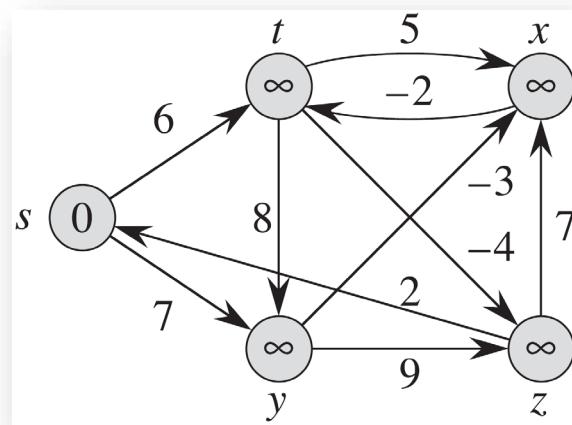
Shortest Path Tree

- The shortest path can be treated as a tree, where the source vertex is the root node
 - Since the shortest paths from source to all other vertexes are not unique, the shortest path trees for a graph are also not unique

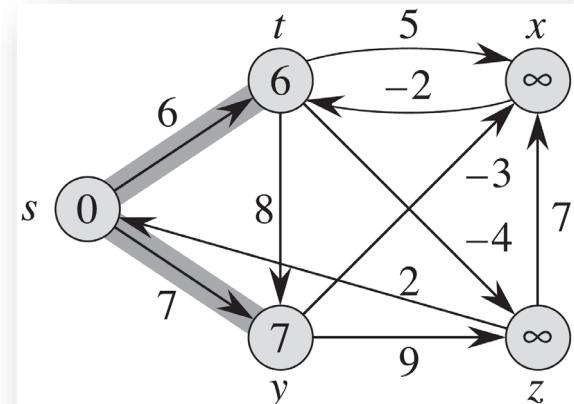


Example.

- The source is vertex s , and we assume that each pass relaxes the edges in the order $(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)$

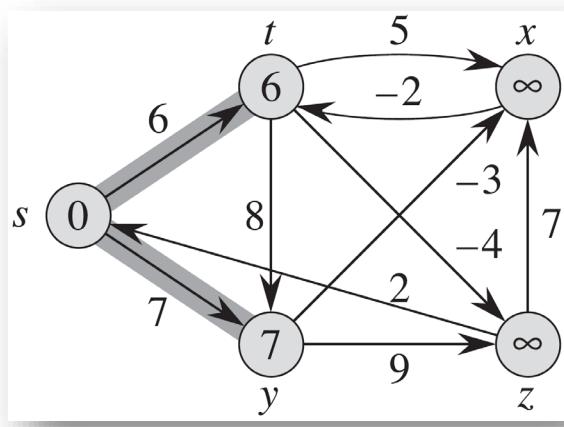


- Iteration1:
 - $(s, t): t.d = 6$
 - $(s, y): y.d = 7$

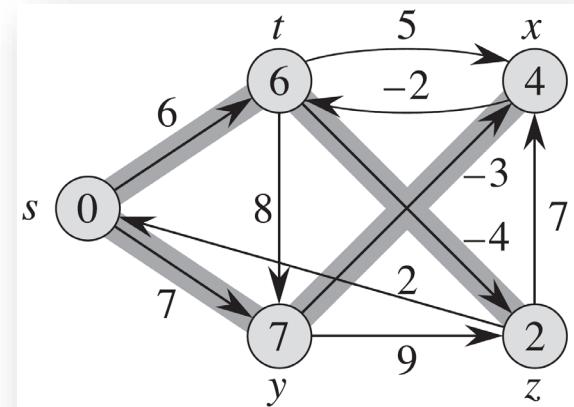


Example..

- The source is vertex s , and we assume that each pass relaxes the edges in the order $(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)$

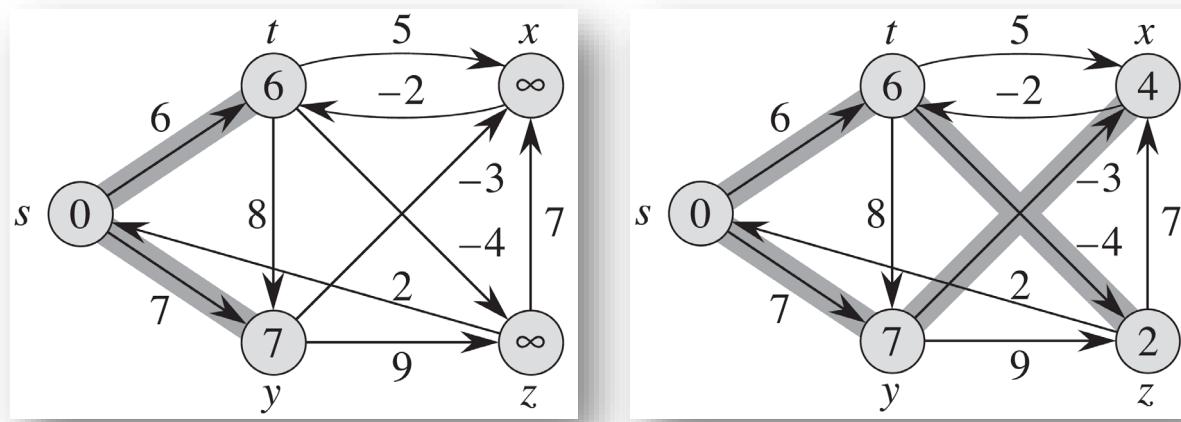


- Iteration2:
 - (t, x) : $x.d = 11$
 - (t, y) : $y.d = 7$ unchange
 - (t, z) : $z.d = 2$
 - (x, t) : $t.d = 6 < 11 - 2$ unchange
 - ...



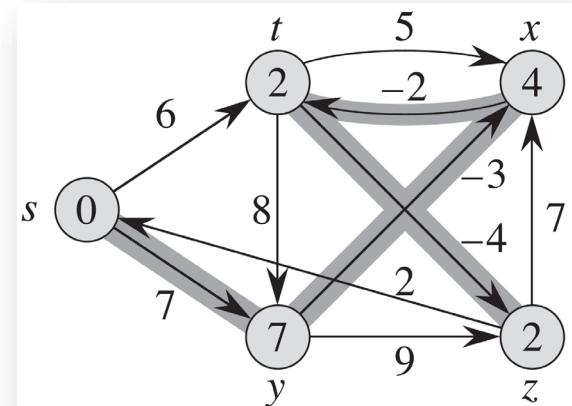
Example...

- The source is vertex s , and we assume that each pass relaxes the edges in the order $(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)$



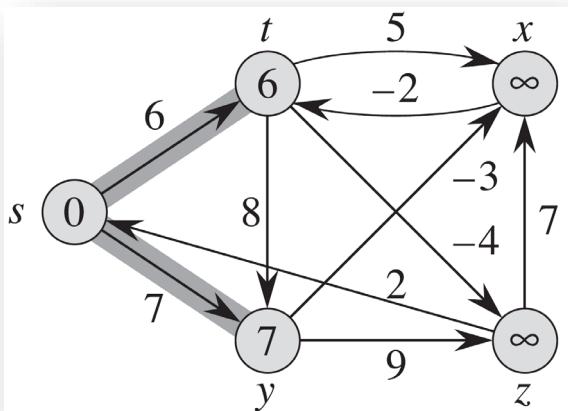
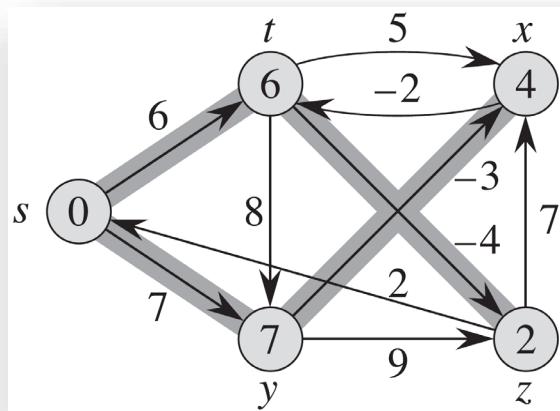
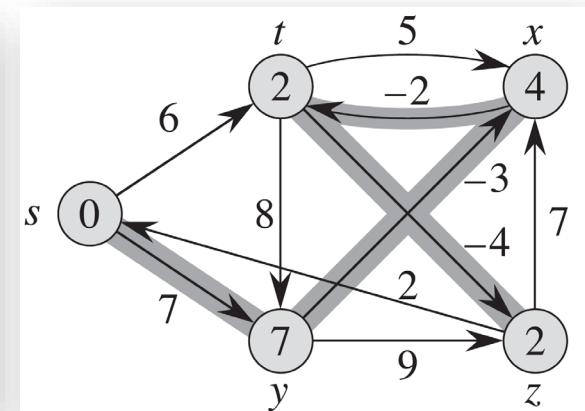
- Iteration 3:

 - (t, x) : $x.d = 4 < 2 + 5$ unchange
 - (t, y) : $y.d = 7 < 2 + 8$ unchange
 - (t, z) : $z.d = 2 = 6 - 4$ unchange
 - (x, t) : $t.d = 2 = 4 - 2 < 6$
 - ...

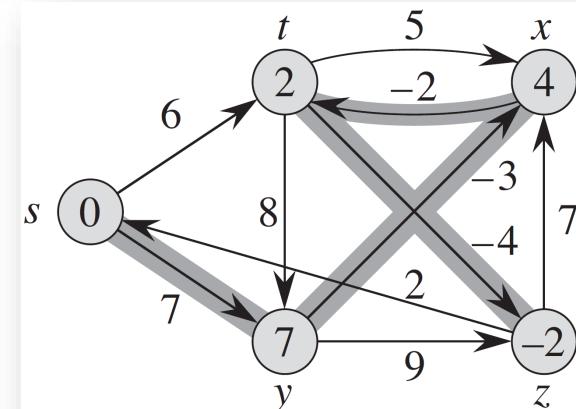


Example....

- The source is vertex s , and we assume that each pass relaxes the edges in the order $(t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)$



- Iteration 4:
 - $(t, x): x.d = 4 < 2 + 5$ unchange
 - $(t, y): y.d = 7 < 2 + 8$ unchange
 - $(t, z): z.d = -2 = 2 - 4$
 - $(x, t): t.d = 2 = 4 - 2$ unchange
 - ...



Questions?

kychen@mail.ntust.edu.tw